Theorem 12 \{connection figure (1234 21435678 6587)]
There exists a one to one mapping F from the set of general 4×4-magic squares with connection figure (1122 33445566 7788) [see Theorems 1.1, 1.2, 1.3] onto the set of general magic 4×4 squares of connection figure (1234 21435678 6587):

$$
\begin{aligned}
& \mathrm{C01} \mathrm{c} 02 \mathrm{c} 03 \mathrm{c} 04 \quad \mathrm{c} 01 \mathrm{c} 06 \mathrm{c} 11 \mathrm{c} 16 \\
& \mathrm{c} 05 \mathrm{c} 06 \mathrm{c} 07 \mathrm{c} 08 \text { c05 c02 c15 c12 } \\
& \text { F: c09 c10 c11 c12 --> c09 c14 c03 c08 } \\
& \text { c13 c14 c15 c16 c13 c10 c07 c04 }
\end{aligned}
$$

For any symmetric subset T with 16 elements, containing 1, of $\{1, \ldots, N\}$ there are 0 or 364 general $4 x 4$ magic squares with entries from T.
The subsets T, which allow general $4 x 4$ magic squares are described in Theorems 1.1 and 1.2.

Proof
An easy verification.

Example

Via F, its inverse mapping F^{-1}, and the 384 transformations of Theorem 1.1 , every general 4×4 magic square with entry 1 and connection figure (1234 21435678 6587) can be derived from the square:

1	11	14	8
6	16	9	3
15	5	4	10
12	2	7	13.

