Theorem 12 {connection figure (1234 2143 5678 6587)]

There exists a one to one mapping F from the set of general 4x4-magic squares with connection figure (1122 3344 5566 7788) [see Theorems 1.1, 1.2, 1.3] onto the set of general magic 4x4 squares of connection figure (1234 2143 5678 6587):

٠	•	٠	٠
•	•	•	•
٠	٠	٠	٠
•	•	•	•

	c01	c02	c03	с04		c01	c06	c11	c16
	c05	c06	c07	c08		c05	c02	c15	c12
F:	c09	c10	c11	c12	>	c09	c14	c03	с08
	c13	c14	c15	c16		c13	c10	c07	с04

For any symmetric subset T with 16 elements, containing 1, of $\{1, \ldots, N\}$ there are 0 or 364 general 4x4 magic squares with entries from T. The subsets T, which allow general 4x4 magic squares are described in Theorems 1.1 and 1.2.

Proof

An easy verification.

Example

Via F, its inverse mapping F $^{-1}$, and the 384 transformations of Theorem 1.1, every general 4x4 magic square with entry 1 and connection figure (1234 2143 5678 6587) can be derived from the square:

1	11	14	8
6	16	9	3
15	5	4	10
12	2	7	13.