Theorem 11 [connection figure (1234 2567 8653 4871)]

(i) Let k,r,s be natural numbers with s<r and 2s<r and either (T)(BI) s+1<k<2s+1 (DI) r+1<k<r+2s+1 (AI) 1<k<s+1 (CI) 2s+1<k<r+1 (EI) r+2s+1<k<2r+1 (FI) 2r+1<k<2r+s+1 (GI) 2r+s+1<k<2r+2s+1 (HI) 2r+2s+1<k, or (II) r<2s and either (AII) 1<k<s+1 (BII) s+1<k<r+1 (CII) r+1<k<2s+1 (DII) 2s+1<k<2r+1 (EII) 2r+1<k<r+2s+1 (FII) r+2s+1<k<2r+s+1 (GII) 2r+s+1<k<2r+2s+1 (HII) 2r+2s+1<k. Then the 16 numbers (*) 1,1+s,1+2s,1+r,1+r+2s,1+2r,1+2r+s,1+2r+2s, k, k+s, k+2s, k+r, k+r+2s, k+2r, k+2r+s, k+2r+2s are pairwise different and (*) is a symmetric subset of $\{1, \ldots, N\}$, N=k+2r+2s. Moreover, there are 16 different general 4x4 magic squares M01, M02, ..., M16 with entries from (*) and connection figure (1234 2567 8653 4871), namely 1+s 1+2r k+2r+2s k+s k+2.s k+r 1+r 1+2r+2sM01 = k+2rk+r+2s 1+r+2s 1

M02 =	1+s k k+2r+2s 1+2r+s	1+2r+2s k+r+2s k+r 1	k+2r 1+r+2s 1+r k+2s	k+s 1+2r 1+2s k+2r+s	(in M01 the [virtual] summand 0s has been exchanged with 2s)
		-			

k+2r+s

M03 and M04 are derived from M01 and M02 by exchanging 1 and k, M05, M06, M07, and M08 arise from M01, M02, M03 and M04 by exchange of r and s, and finally, M08, M09,..., M16 are the mirror images of M01, M02,..., M08 by horizontal reflection.

(ii) Every general 4x4 magic square M with entries from a symmetric subset of {1,...,N}, with connection figure (1234 2567 8653 4871), and with entry 1, is of the form either M1,M2,...,M15, or M16; and the corresponding parameters k,r,s for this subset fulfil the inequalities either AI,BI,CI,DI,EI,FI,GI,HI,AII,BII,CII,DII,EII,FII,GII, or HII.

Proof

1+2r+s

1+2s

k

(i) is verified easily; (ii) follows, when the linear equations for M are solved.

Remark 1

For each symmetric subset of {1,...,N} containing the number 1, and allowing a general 4x4 magic square of connection figure (1234 2567 8653 4871) there are exactly 16 different general 4x4 magic squares with entries from this subset. The smallest N, with a symmetric subset allowing a general 4x4 magic square with connection figure (1234 2567 8653 4871) and 1 as an entry, is N=18. From N=18 to N=29 every case AI,...,HII occurs.

Remark 2

(i) With s=3r in (*) one has the 16 numbers of (*) from Theorem 06. The map c01 c02 c03 c04 c06 c02 c10 c14 c05 c06 c07 c08 c01 c05 c13 c09 c09 c10 c11 c12 --> c04 c08 c16 c12 c13 c14 c15 c16 c07 c03 c11 c15 brings any general magic 4x4 square of connection figure (1122 3456 7878 6543) onto a

general 4x4 magic square of connection figure (1234 2567 8653 4871).

(ii) With s=4r in (*) one has the 16 numbers of (*) from Theorem 07. The map

•

brings any general magic 4x4 square of connection figure (1122 3456 6783 8547) onto a general 4x4 magic square of connection figure (1234 2567 8653 4871)

(iii) There is an imbedding map i of the set of GMS of connection figure (1234 2567 8653 4871) into the set of GMS of connection figure (1122 3443 5665 7788), defined by:

	c01	c02	c03	c04		c12	c03	c14	c09
	c05	c06	c07	c08		c06	c13	с04	c11
i:	c09	c10	c11	c12	>	c10	c01	c16	c07.
	c13	c14	c15	c16		c08	c15	c02	c05

This follows from seven additional equations, valid for every general magic square of connection figure (1234 2567 8653 4871):

c01+c03+c10+c12 = 2(N+1), c01+c04+c08+c09 = 2(N+1), c04+c06+c11+c13 = 2(N+1), c02+c04+c14+c16 = 2(N+1), c05+c07+c09+c11 = 2(N+1), c05+c12+c13+c14 = 2(N+1), c06+c08+c10+c12 = 2(N+1).