Theor	em 9	[connection	figure (1	234 5167	7385 26	48)]		• • • •		
(i)	Let	k,r be natu:	ral number	rs with ei	ther					
	(D)	r < k < 1. 2.5r < k < 3 5r < k < 6r	3r (E) 3r					• • •		
	Then the 16 numbers									
	<pre>(*) 1,r+1,2r+1,3r+1,4r+1,5r+1,k+1-r,k+1+2r, k+1+3r,k+1+6r,2k+1,2k+1+r,2k+1+2r,2k+1+3r,2k+1+4r,2k+1+5r</pre>									
	are pairwise different and (*) is a symmetric subset of $\{1, \ldots, N\}$, N=2k+1+5r, with difference vector, casewise:									
	(A) k-r,2r-k,r,2(k-r),3r-2k,k-r,3r-2k,k-r,k-r,3r-2k,2(k-r),r,2r-k,k-r									
	(B) k-r,2r-k,r,r,2k-3r,2(r-k),2r-k,2k-3r,2r-k,2r-k,2k-3r,r,r,2r-k,k-r									
	(C) r,k-2r,3r-k,r,r,k-2r,k-2r,5r-2k,k-2r,k-2r,r,r,3r-k,k-2r,r									
	(D) r,k-2r,3r-k,r,r,k-2r,3r-k,2k-5r,3r-k,2r-k,r,r,3r-k,k-2r,r									
	(E) r,r,k-3r,4r-k,r,r,k-3r,r,k-3r,r,r,4r-k,k-3r,r,r									
	(F) r,r,r,k-4r,5r-k,r,k-3r,r,k-3r,r,5r-k,k-4r,r,r									
	(G) r,r,r,r,k-5r,6r-k,k-3r,r,k-3r,6r-k,k-5r,r,r,r,r									
	<pre>(H) r,r,r,r,k-6r,3r,r,3r,k-6r,r,r,r,r,r.</pre>									
		Moreover, there are 4 different general 4x4 magic squares M1, M2 , M3, M4								
		with entries from (*) and connection figure (1234 5167 7385 2648), namely								
	Ml	5r+1 k+1+3r = k+1-r 2k+1+3r	4r+1		2k+1+2 k+1+6r k+1+2r 1.					
		M2 is derived from M1 by interchange of 1 and $2k+1$, M3 and M4, are obtained from M1 and M2 by a 180 degree rotation.								
(ii)	Let N be a natural number of form N=7r+1, 2 <r a="" and="" be="" either<="" k="" let="" natural="" number="" td="" with=""></r>									
	(I) $2 < k < r+2$, (J) $k < r+1 < 2k-1$, then the 16 numbers									
	<pre>(**) 1, 3r+1, 4r+1, 7r+1, k, r+k, 2r+k, 3r+k, 4r+k, 5r+k, 2r+2-k, 3r+2-k, 4r+2-k, 5r+2-k, 6r+2-k, 7r+2-k</pre>									
	are pairwise different and (**) is a symmetric subset of $\{1, \ldots, N\}$ with difference vector, casewise:									
	(I) k-1,r,r+2-2k,2k-2,r+2-2k,k-1,k-1,r+2-2k,k-1,k-1,r+2-2k,2k-2,r+2-2k,r,k-1									
	(J) k-1,2r+2-2k,2k-2-r,2r+2-2k,2k-2-r,r-k+1,r-k+1,2k-2-r,r-k+1,r+1-k,2k-2-r, 2r+2-2k,2k-2-r,2r+2-2k,k-1									
		Moreover, there are 4 different general 4x4 magic squares M5, M6, M7, M8 with entries from (**) and connection figure (1234 5167 7385 2648), namely								
		5r+k	2r+k	3r+2-k	4r+1-k					
	М5	4r+1 = 1	2r+2-k 4r+k	k+r 7r+2-k	7r+1 3r+1					
	1.10	- 1 5r+2-k	41+k 6r+2-k	k+3r	51+1 k					

		7r+2-k	4r+2-k	k+r	k+2r
		4r+1	k	3r+2-k	7r+1
M6	=	1	6r+2-k	k+5r	3r+1
		k+3r	k+4r	5r+2-k	2r+2-k

M7 and M8 are obtained from M5 and M6 by a 180 degree rotation.

- (iii) Every general magic square M of connection figure (1234 5167 7385 2648) with entries from a symmetric subset of {1,...,N}, containing the number 1, is of the form either M1,M2,M3,M4,M5,M6,M7,or M8, and the corresponding difference set of this subset is of the form either A,B,C,D,E,F,G,H,I, or J.
- Proof (i) and (ii) can be verified by a simple calculation, (iii) can be proved by solving the linear equations for M.

Remark

- (i) For each symmetric subset of {1,...,N} containing the number 1, and allowing a general 4x4 magic square of connection figure (1234 5167 7385 2648) there are exactly 4 different general 4x4 magic squares with entries from this subset.
- (ii) There is an imbedding map i from the set of general 4x4 magic squares with connection figure (1234 5167 7385 2648) into the set of general magic squares of connection figure (1122 3443 5665 7788). The map i is defined by:

	c01	c02	c03	с04		c01	c06	c15	с04
	c05	c06	c07	c08		c05	c14	c07	c12
i:	c09	c10	c11	c12	>	c09	c10	c03	c08.
	c13	c14	c15	c16		c13	c02	c11	c16

This follows from the additional equation c01+c03+c14+c16=2(N+1), valid for every general 4x4 magic square of connection figure (1234 5167 7385 2648).