Theorem 8 [connection figure (1221 3443 5665 7887)]

(i) Let k,r,s,t,N be natural numbers (with k+s<r+1 and t<k+r+1) such that the 16 numbers

(*) 1, k+1, r+1, s+1, t+1, -k+r+1, k+r-t+1, -k+r-s+1, N+k-r+s, N-k-r+t, N+k-r, N-t, N-s, N-r, N-k, N

are pairwise different and positive, then there exist (at least) 8 different general 4x4 magic squares M01,M02,...,M08 with entries from (*) and connection figure (1221 3443 5665 7887), namely:

1	t+1	N-t	N		N-k	N-s	s+1	k+1
N-s	N-k	k+1	s+1		t+1	1	Ν	N-t
M01 = N+k-r+s	N-r	r+1	-k+r-s+1,	M02 =	k+r-t+1	-k+r+1	N+k-r	N-k-r+t,
-k+r+1	k+r-t+1	N-k-r+t	N+k-r		N-r	N+k-r+s	-k+r-s+1	r+1

M03,M04 are mirror images of M01,M02 from reflection at a vertical axis. M05,M06,M07 and M08 are derived from M01,...,M04 by reflection at a horizontal axis.

- (ii) Let k,r,s,t,N be natural numbers (with k < r+t+1, k+s < r+2t+1) such that the 16 numbers
 - (**) 1, k+1, r+1, s+1, t+1, k+r+1, -k+r+t+1, -k+r-s+2t+1, N+k-r+s-2t, N+k-r-t, N-k-r, N-t, N-s, N-r, N-k, N

are pairwise different and positive, then there exist (at least) 8 different general 4x4 magic squares M09,M10,...,M16 with entries from (*) and connection figure (1221 3443 5665 7887), namely:

t+1	1	Ν	N-t	N-k	N-s	s+1	k+1
N-s	N-k	k+1	s+1	1	t+1	N-t	Ν
M09 = N+k-r+s-2t	N-r	r+1	-k+r-s+2t+1,	M10 = k+r+1	-k+r+t+1	N+k-r-t	N-k-r.
-k+r+t+1	k+r+1	N-k-r	N+k-r-t	N-r	N+k-r+s-2t	-k+r-s+2t+1	r+1

M11,M12 are mirror images of M09,M10 from reflection at a vertical axis. M13,M14,M15 and M16 are derived from M09,...,M12 by reflection at a horizontal axis.

- (iii) Let T be a symmetric subset of {1,...,N}, containing 1 as an element and let M be a general 4x4 magic square of connection figure (1221 3443 5665 7887) with entries from T. If 1 is a diagonal element of M, then there exists a quadruple (k,r,s,t), such that T is the set (*) and M is one of the eight squares M01,...,M08. If 1 does not belong to a diagonal of M, then there exists a quadruple (k,r,s,t), such that T consists of the elements (**) and M is one of the eight squares M09,...,M16.
- (iv) Suppose (k,r,s,t) represents T as set (*). Call (k,r,s,t) "1-reduced", when the inequalities 2*t+1 < k+r+1 < N and r < k+2*s hold. Under the assumptions of (iii) with 1 as a diagonal element, there exists a unique 1-reduced (k,r,s,t). Seven other quadruples represent T as set (*), too: (N-r-1,N-k-1,s,N-k-r+t-1), (k,r,s,k+r-t), (N-r-1,N-k-1,s,N-t-1), (k,r,-k+r-s,t), (N-r-1,N-k-1,-k+r-s,N-k-r+t-1), (k,r,-k+r-s,k+r-t), (N-r-1,N-k-1,-k+r-s,N-t-1).

Now suppose (k,r,s,t) represents T as a set (**). Call (k,r,s,t) "2-reduced", if the inequalities k<r<k+2s-2t and 2t+r+1<N+k are valid. Under the assumptions of (iii), with 1 not in any diagonal, there exists a unique 2-reduced (k,r,s,t), and seven other quadruples represent T as a set (**), too: (r,k,-k+r-s+2t,-k+r+t), (r,k,N+k+r+s-2t-1,N+k-r-t-1), (r,k,N-s-1,N-t-1), (k,r,-k+r-s+2t,t), (r,k,s,-k+r+t), (r,k,N-s-1,N+k-r-t-1), (r,k,N+k-r+s-2t-1,N-t-1).

Moreover, let z1 be the number of 1-reduced quadruples (k,r,s,t), such that T consists of the elements (*), and z2 be the number of 2-reduced quadruples (k,r,s,t), such that T is represented by the elements (**). Then there are exactly 64*z1+64*z2 general 4x4 magic squares with entries from T. For N<61 there are 114 possible values for (z1|z2), shown in the table below. An entry N in row z1 and column z2 means: N is the smallest value, that there exists a symmetric subset with 16 elements from {1,...,N}, containing 1, represented by z1 1-reduced quadruples as (*) and z2 2-reduced quadruples as set (**).

Proof

(i), (ii) can be verified easily. (iii) follows, when the involved linear equations for M are solved. (iv) results from 7 transformations for M01 and 7 transformations for M09, which let 1 and N fixed, they are shown in the appendix below. The values for (z1|z2) were found by computer experiment. For 31<N no new pair (z1|z2) was found.

Examples

- (1) N=16, classical magic 4x4-squares: There are z1=11 quadruples (k,r,s,t), which are 1-reduced, namely (1,7,4,3), (1,11,8,3), (1,12,9,5), (1,13,8,5), (2,7,4,3), (2,9,4,1), (2,11,8,3), (3,8,4,2), (3,10,6,2), (4,7,2,5), and (5,8,2,4). There are z2=8 quadruples (k,r,s,t), which are 2-reduced: (1,2,7,5), (1,4,7,3), (1,8,11,3), (2,4,7,3), (2,8,11,3), (3,8,5,1)), (4,8,13,5), and (4,9,10,3). Therefore there exist 64(z1+z2)=1216 classical magic 4x4-squares with connection figure (1221 3443 5665 7887).
- (2) N=20, T={1,2,3,4,6,7,8,10,11,13,14,15,17,18,19,20}. Here (z1|z2)=(1|0); (k,r,s,t)=(1,17,9,5). Therefore there are 64 general 4x4 magic squares of connection figure (1221 3443 5665 7887) with entries from T.
- (3) The smallest N, which has a symmetric subset T of 16 elements, containing 1, with (z1|z2)=(0|0), is N=19, T={1,2,3,4,5,6,7,9,11,13,14,15,16,17,18,19}. For N=16,17,18, and even N=20, every symmetric subset T, of {1,...,N} with |T|=16 and 1 as an element, allows general 4x4 magic squares with entries from T.

Table for (z1|z2)

	z2																				
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
	0	19	20	20	22	20	20	22	25	25	29	29		29							
	1	20	20	18	18	18	18	22	24	25	31										
	2	22	22	20	20	21	20	22	23	25	31	21		21							
	3	20	22	20	20	21	22	23	23	26	19		21								
	4	25	25	22	20	24	23	21	24												
	5	27	21	25	21	27	23	20	27												
z1	6		25	23	25	23		19		24	28	26	22	25	24	25		28	25		22
	7						23		20		24	22		20	24				25		
	8					21				18		20	20	21	18	23		22			
	9							25		22	29	26	22	25	21						
	10								22		20	22	23	20	24						
	11								27	16		23	25	21	18						
	12									19	19	21									
	13																		17		

Appendix

7 mappin	gs for M01, re	sp. M09, which	let 1 and N	N fixed. M(01/M09 = c0	1 c02 c03 c04 5 c06 c07 c08 9 c10 c11 c12, 3 c14 c15 c16
M01>	c05 c11 c10 c c09 c07 c06 c	004 c01 c14 008 c05 c06 c12, c09 c10 c16 c13 c02	c07 c08 c11 c12,	c05 c11 c10 c09 c07 c06) c08 5 c12,	
	c09 c06 c07 c c05 c10 c11 c	c04 c01 c15 c12 c09 c11 c08, c05 c07 c16 c13 c03	c10 c12 c06 c08,	c09 c06 c07 c05 c10 c11	7 c12 c0 c08, c0	5 c07 c06 c08.
M09>	c09 c10 c11 c c05 c06 c07 c	c16 c16 c02 c12 c12 c10 c08, c08 c06 c04 c04 c14	c11 c09 c07 c05,	c08 c10 c11 c12 c06 c0	c05 c09,	
	c09 c06 c07 c c05 c10 c11 c	:04 c13 c02 :12 c05 c10 :08, c09 c06 :16 c01 c14	c11 c08 c07 c12,	c08 c10 c11 c12 c06 c07	_ c05 c1 7 c09, c0	2 c10 c11 c09 8 c06 c07 c05.