Theorem 5 [connection figure (1122 34565768 4873)]
Let M be a general 4×4 magic square of connection figure (1122 34565768 4873), then there exist integer numbers k, r such that:

$$
M=\begin{array}{llll}
k+7 r & k+14 r & k & k+21 r \\
k+15 r & k+13 r & k+9 r & k+5 r \\
k+12 r & k+4 r & k+16 r & k+10 r . \\
k+8 r & k+11 r & k+17 r & k+6 r
\end{array}
$$

 with entries from the symmetric set $\{1,5,6,7,8,9,10,11,12,13,14,15,16,17,18,22\}$.

Since for $N=22$ there are only the 2 possibilities: $k=1, r=1$ or $k=22$, $r=-1$, any general $4 x 4$ general magic square of connection figure (1122 34565768 4873), with entry 1, can be derived from either $k=1$, $r=t$ or $k=N, r=-1$, where $N=1+21 t$, $0<t$.

Proof
By solving the linear equations for M.

Remark

There is a one to one mapping F from the set of general $4 x 4$ magic squares of connection figure (1122 34565678 8347) onto the set of general $4 x 4$ magic squares of connection figure (1122 34565678 4873),

Moreover, there is an injection i from the set of 4×4 general magic squares with connection figure (1122 34565768 4873) into the set of $4 x 4$ general magic squares of connection figure (1122 34435665 7788), defined by

$$
i: \begin{array}{lllllllll}
c 01 & c 02 & c 03 & c 04 \\
c 05 & c 06 & c 07 & c 08 \\
c 09 & c 10 & c 11 & c 12 \\
c 13 & c 14 & c 15 & c 16
\end{array} \quad-\quad \begin{array}{cccc}
c 03 & c 04 & c 13 & c 06 \\
c 09 & c 12 & c 14 & c 07 \\
c 11 & c 10 & c 15 & c 08 . \\
c 02 & c 01 & c 16 & c 05
\end{array}
$$

