Theorem 5 [connection figure (1122 3456 5768 4873)]

Let M be a general 4x4 magic square of connection figure (1122 3456 5768 4873), then there exist integer numbers k,r such that:

	k+ 7r	k+14r	k	k+21r
	k+15r	k+13r	k+ 9r	k+ 5r
M =	k+12r	k+ 4r	k+16r	k+10r.
	k+ 8r	k+11r	k+17r	k+ 6r

By k+tr -> 1+r, 0<t, and k -> 1 the square M is mapped onto a general magic square with entries from the symmetric set $\{1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 22\}$.

Since for N=22 there are only the 2 possibilities: k=1, r=1 or k=22, r=-1, any general 4x4 general magic square of connection figure (1122 3456 5768 4873), with entry 1, can be derived from either k=1, r=t or k=N, r=-1, where N=1+21t, 0<t.

Proof

By solving the linear equations for M.

Remark

There is a one to one mapping F from the set of general 4x4 magic squares of connection figure (1122 3456 5678 8347) onto the set of general 4x4 magic squares of connection figure (1122 3456 5678 4873),

	c01	c02	c03	c04		c04	c03	c02	c01
	c05	c06	c07	c08		c10	c12	c09	c11
F:	c09	c10	c11	c12	>	c07	c05	c08	c06.
	c13	c14	c15	c16		c13	c15	c14	c16

Moreover, there is an injection i from the set of 4x4 general magic squares with connection figure (1122 3456 5768 4873) into the set of 4x4 general magic squares of connection figure (1122 3443 5665 7788), defined by

	c01	c02	c03	с04		c03	с04	c13	c06
	c05	c06	c07	c08		c09	c12	c14	c07
i:	c09	c10	c11	c12	>	c11	c10	c15	c08.
	c13	c14	c15	c16		c02	c01	c16	c05