Theorem 4 [connection figure (1122 34565768 8347)]
Let M be a general 4×4 magic square of connection figure (1122 34565768 8347), then there exist integer numbers k, r such that:

$k+21 r$	k	$k+14 r$	$k+7 r$
$k+4 r$	$k+10 r$	$k+12 r$	$k+16 r$
$k+9 r$	$k+15 r$	$k+5 r$	$k+13 r$.
$k+8 r$	$k+17 r$	$k+11 r$	$k+6 r$

 square with entries from the symmetric set
$\{1,5,6,7,8,9,10,11,12,13,14,15,16,17,18,22\}$.
Since for $\mathrm{N}=22$ there are only the 2 possibilities: $\mathrm{k}=1$, $\mathrm{r}=1$ or $\mathrm{k}=22$, $\mathrm{r}=-1$, any general 4x4 general magic square of connection figure (1122 34565768 4873), with entry 1, can be derived from either $k=1, r=t$ or $k=N, r=-1$, where $N=1+21 t$, $0<t$.

Proof
By solving the linear equations for M.

