Theorem 4 [connection figure (1122 3456 5768 8347)]

Let M be a general 4x4 magic square of connection figure (1122 3456 5768 8347), then there exist integer numbers k,r such that:



|   |   | k+2 | 21r | k     | k+14r | k+ 7r  |
|---|---|-----|-----|-------|-------|--------|
|   |   | k+  | 4r  | k+10r | k+12r | k+16r  |
| М | = | k+  | 9r  | k+15r | k+ 5r | k+13r. |
|   |   | k+  | 8r  | k+17r | k+11r | k+ 6r  |

By k+tr -> 1+r, for 0<t, and k -> 1 the square M is mapped onto a general magic square with entries from the symmetric set  $\{1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 22\}$ .

Since for N=22 there are only the 2 possibilities: k=1, r=1 or k=22, r=-1, any general 4x4 general magic square of connection figure (1122 3456 5768 4873), with entry 1, can be derived from either k=1, r=t or k=N, r=-1, where N=1+21t, 0<t.

Proof

By solving the linear equations for M.